

SECO Geosynthetics: drainage and waterproofing functions

BGS : Drainage en grondwaterbeheersing met geokunsstoffen / Drainage et gestion des eaux souterraines au moyen de géomatériaux

SECO

2. Drainage with geosynthetics

"All geomembranes are punched – all geotextiles are clogged"

Why not to use geomembrane for geotextiles application and geotextiles for waterproofing »

May be, the reason it linked with a correct use of the product?

GEOSYNTRHETICS \supset **GEOMEMBRANE & GEOTEXTILES Function GEOMEMBANES** > < **Function SEOTEXTILES**

- "All geomembranes are punched all geotextiles are clogged"
- Why not to use geomembrane for geotextiles application and geotextiles for waterproofing »

May be, the reason is linked with a correct use of the product : DESIGN & EXECUTION!

Geomembrane -Waterproofing

Some basic rules

> About the design :

 \succ Function = waterproofing > < stabilization \rightarrow limit the strength & deformation

□ The bottom, capping must have enough bearing capacity

- □ The slope must be stabilized
- □ Avoid pressure of water/ gas under the geomenbrane
- □ In case of settlement or temperature effect , limit the deformation (HDPE +/-5%)

Some basic rules

> About the design :

- Design on slope :
- Designing the anchorage against :

□ Mainly wind effect :

Type de géomembrane	Densité de la géomembrane ρ _{géom} [T/m ³]	Epaisseur de la géomembrane t _{géom} [mm]	Masse par unité de surface µgéom [kg/m ²]	Vitesse minimale de soulèvement à z = 200 m [km/h]
P.V.C.	1,25	0,5	0,625	11
		1,0	1,25	15,8
H.D.P.E.	0,94	1,0	0,94	13,7
		1,5	1,41	16,8
		2,0	1,88	19,4
		2,5	2,35	21,7
Bitume	variable	3	3,5	26,5
		5	6	34,7

About the design on slope

Designing the anchorage against :

□ Friction effect : (with a correct design, this effect is limited)

Designing to limit the tensile stress in the geomembrane :

friction angle under side > upper side / sliding geotextile / counter mass at the

E3 E2

E1

Hs

About the design on the bottom or for capping

Designing to prevent effect of the deformation :

□ Capping : Limit the deformation in case of settlement ?

→ Put the geomembrane when settlement are limited

□ Bottom : use system in case of possible cavities

LHs

 σ_{eff}

Some basic rules

About the execution : Point of attention: Wind effect, temperature, humidity, protection
Wind effect : don't place geomembrane when wind velocity is high
Protection :The support must be clear of any punching element -> geotextile to protect

About the execution : Point of attention: Wind effect, temperature & humidity, protection

- □ Temperature and humidity have to be acceptable → dilatation effect & welding issue
 - □ Temperature > 5°
 - □ Play attention to differential temperature
 - □ Support must be dry
 - □ Necessity of testing of the possibility of welding (+ resistance)

SEC

Some basic rules > About the execution : Points of attention:

pipe passage through geomembrane

From rigid support to moving support: "Portefeuille" transition

Drainage with geosynthetics

2 Mains systems when using of geotextiles for drainage function

Geotextile as drainage & filtration system

➔ Permitivity / filtration - transmisivity

Geotextile as filtration function

➔ Permitivity / filtration

Geotextile as filtration function

- 3 roles for the geotextile :
- Stabilization role: Hold the soil as a whole in place by stabilizing

the particles constituting its skeleton;

- Role of water permeability: Maintain the free circulation of water throughout the life of the structure;
- Role of permeability to moving particles: Allow fine particles entrained to pass in order to prevent the clogging.

The filtration in short

Designing the geotextile as filtration function

- □ Permeability permitivity criteria : $\psi \ge C$. Ks permittivity ⊥ Kn: Ψ = Kn/e [s-1]
- →Allowing water **to go through** the geotextile

Filtration criteria: Comparison between the opening of the filtration of the filter and the dimension of the largest particles likely of the cross the geotextile

$$O_f < \lambda_r \cdot d_x$$

The filtration criteria

100

Belgium : (NBN 29001)

- □ Permeability permitivity criteria : $\psi \ge C$. Ks permittivity \bot <n: Ψ = Kn/e [s-1]
- →Allowing water **to go through** the geotextile
- □ Filtration criteria: $O_{90} \le 2 \cdot d_{90}$
- **Drainage** : Most of the case use as geocomposite:
- transmissivity // : θ : drainage in the plan: $\theta = Kp$. e [m³/m/s]

$$\theta_{requ} = K_p \cdot e > f \cdot Q$$

- The available transmissivity depends on :
- □ The compressive stress applied
- □ The gradient
- □ The slope of the support
- □ The allowable hydraulic flow in the geosynthetic
- □ The long term behaviour of the geosynthetic

Points of attention about geosynthetic transmissivity :

2) Effect of the compressive stress

Other systems : *Most of the case use as geocomposite:*

Other systems : Water in the geosynthetic and the upper layer:

- $q(\sigma_n, i_0, \text{ long terme}) = q(\sigma_n, i_0) / (\alpha \cdot F) \ge q_d L \cos(\beta)$
- α : coefficient de réduction de débit dû au colmatage interne (1 2.5)
- F: coefficient de réduction d'épaisseur NF EN ISO 25619-1

SECO Belgium nv/sa Hermeslaan, 9 BE-1831 Diegem www.groupseco.be